Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Allergy Clin Immunol ; 149(2): 557-561.e1, 2022 02.
Article in English | MEDLINE | ID: covidwho-1670624

ABSTRACT

BACKGROUND: Patients with some types of immunodeficiency can experience chronic or relapsing infection with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). This leads to morbidity and mortality, infection control challenges, and the risk of evolution of novel viral variants. The optimal treatment for chronic coronavirus disease 2019 (COVID-19) is unknown. OBJECTIVE: Our aim was to characterize a cohort of patients with chronic or relapsing COVID-19 disease and record treatment response. METHODS: We conducted a UK physician survey to collect data on underlying diagnosis and demographics, clinical features, and treatment response of immunodeficient patients with chronic (lasting ≥21 days) or relapsing (≥2 episodes) of COVID-19. RESULTS: We identified 31 patients (median age 49 years). Their underlying immunodeficiency was most commonly characterized by antibody deficiency with absent or profoundly reduced peripheral B-cell levels; prior anti-CD20 therapy, and X-linked agammaglobulinemia. Their clinical features of COVID-19 were similar to those of the general population, but their median duration of symptomatic disease was 64 days (maximum 300 days) and individual patients experienced up to 5 episodes of illness. Remdesivir monotherapy (including when given for prolonged courses of ≤20 days) was associated with sustained viral clearance in 7 of 23 clinical episodes (30.4%), whereas the combination of remdesivir with convalescent plasma or anti-SARS-CoV-2 mAbs resulted in viral clearance in 13 of 14 episodes (92.8%). Patients receiving no therapy did not clear SARS-CoV-2. CONCLUSIONS: COVID-19 can present as a chronic or relapsing disease in patients with antibody deficiency. Remdesivir monotherapy is frequently associated with treatment failure, but the combination of remdesivir with antibody-based therapeutics holds promise.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antibodies, Monoclonal/therapeutic use , Antiviral Agents/therapeutic use , COVID-19/therapy , Immunologic Deficiency Syndromes/therapy , SARS-CoV-2/drug effects , Adenosine Monophosphate/therapeutic use , Adult , Aged , Aged, 80 and over , Alanine/therapeutic use , B-Lymphocytes/immunology , B-Lymphocytes/pathology , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Chronic Disease , Female , Humans , Immunization, Passive , Immunologic Deficiency Syndromes/immunology , Immunologic Deficiency Syndromes/pathology , Immunologic Deficiency Syndromes/virology , Lymphocyte Count , Male , Middle Aged , Recombinant Fusion Proteins/administration & dosage , Recurrence , SARS-CoV-2/pathogenicity , Treatment Failure , COVID-19 Serotherapy
2.
Proc Natl Acad Sci U S A ; 118(44)2021 11 02.
Article in English | MEDLINE | ID: covidwho-1470027

ABSTRACT

The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in over 100 million infections and millions of deaths. Effective vaccines remain the best hope of curtailing SARS-CoV-2 transmission, morbidity, and mortality. The vaccines in current use require cold storage and sophisticated manufacturing capacity, which complicates their distribution, especially in less developed countries. We report the development of a candidate SARS-CoV-2 vaccine that is purely protein based and directly targets antigen-presenting cells. It consists of the SARS-CoV-2 Spike receptor-binding domain (SpikeRBD) fused to an alpaca-derived nanobody that recognizes class II major histocompatibility complex antigens (VHHMHCII). This vaccine elicits robust humoral and cellular immunity against SARS-CoV-2 and its variants. Both young and aged mice immunized with two doses of VHHMHCII-SpikeRBD elicit high-titer binding and neutralizing antibodies. Immunization also induces strong cellular immunity, including a robust CD8 T cell response. VHHMHCII-SpikeRBD is stable for at least 7 d at room temperature and can be lyophilized without loss of efficacy.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19 Vaccines/pharmacology , COVID-19/immunology , COVID-19/prevention & control , Pandemics , SARS-CoV-2/immunology , Amino Acid Sequence , Animals , Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , Antigen-Presenting Cells/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/epidemiology , COVID-19 Vaccines/administration & dosage , Camelids, New World/immunology , Female , Histocompatibility Antigens Class II/immunology , Humans , Immunity, Cellular , Immunity, Humoral , Immunization, Secondary , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Pandemics/prevention & control , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , SARS-CoV-2/genetics , Single-Domain Antibodies/administration & dosage , Single-Domain Antibodies/immunology , Spike Glycoprotein, Coronavirus/administration & dosage , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
3.
Muscle Nerve ; 64(4): 487-490, 2021 10.
Article in English | MEDLINE | ID: covidwho-1318732

ABSTRACT

INTRODUCTION/AIMS: There are currently three medications approved for spinal muscular atrophy (SMA), but the use of these medications in combination has not been well described. METHODS: This is a retrospective report of four cases of SMA treated with dual onasemnogene and risdiplam therapy at our institution. RESULTS: Following onasemnogene therapy, all four patients experienced a perceived plateau of therapeutic benefit, at which time daily risdiplam was started. Transient fatigue and weakness was seen in two patients following risdiplam initiation, but this resolved within 1 mo. One patient was hospitalized with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and post-viral pneumonia, weeks following risdiplam initiation. No other adverse effects related to onasemnogene and risdiplam combination therapy were identified and all patients experienced objective and subjective improvement. DISCUSSION: Combination therapy with onasemnogene and risdiplam in patients with SMA appears to be well-tolerated. Further large prospective trials are needed to determine whether dual therapy is more efficacious than monotherapy, and to identify rare adverse events that may occur with the use of combination therapy.


Subject(s)
Azo Compounds/administration & dosage , Biological Products/administration & dosage , Pyrimidines/administration & dosage , Recombinant Fusion Proteins/administration & dosage , Spinal Muscular Atrophies of Childhood/diagnosis , Spinal Muscular Atrophies of Childhood/therapy , Combined Modality Therapy/methods , Drug Therapy, Combination , Female , Genetic Therapy/methods , Humans , Infant , Male , Retrospective Studies , Spinal Muscular Atrophies of Childhood/physiopathology
4.
Front Immunol ; 11: 602254, 2020.
Article in English | MEDLINE | ID: covidwho-1081589

ABSTRACT

Given the aggressive spread of COVID-19-related deaths, there is an urgent public health need to support the development of vaccine candidates to rapidly improve the available control measures against SARS-CoV-2. To meet this need, we are leveraging our existing vaccine platform to target SARS-CoV-2. Here, we generated cellular heat shock chaperone protein, glycoprotein 96 (gp96), to deliver SARS-CoV-2 protein S (spike) to the immune system and to induce cell-mediated immune responses. We showed that our vaccine platform effectively stimulates a robust cellular immune response against protein S. Moreover, we confirmed that gp96-Ig, secreted from allogeneic cells expressing full-length protein S, generates powerful, protein S polyepitope-specific CD4+ and CD8+ T cell responses in both lung interstitium and airways. These findings were further strengthened by the observation that protein-S -specific CD8+ T cells were induced in human leukocyte antigen HLA-A2.1 transgenic mice thus providing encouraging translational data that the vaccine is likely to work in humans, in the context of SARS-CoV-2 antigen presentation.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Lung/immunology , Spike Glycoprotein, Coronavirus/administration & dosage , Animals , COVID-19 Vaccines/pharmacology , Genetic Vectors/immunology , Genetic Vectors/pharmacology , Humans , Immunoglobulin G/immunology , Membrane Glycoproteins/administration & dosage , Membrane Glycoproteins/immunology , Mice , Mice, Inbred C57BL , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology
5.
J Biol Chem ; 296: 100346, 2021.
Article in English | MEDLINE | ID: covidwho-1056842

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has developed into a global pandemic since its first outbreak in the winter of 2019. An extensive investigation of SARS-CoV-2 is critical for disease control. Various recombinant monoclonal antibodies of human origin that neutralize SARS-CoV-2 infection have been isolated from convalescent patients and will be applied as therapies and prophylaxis. However, the need for dedicated monoclonal antibodies suitable for molecular pathology research is not fully addressed. Here, we produced six mouse anti-SARS-CoV-2 spike monoclonal antibodies that not only exhibit robust performance in immunoassays including western blotting, ELISA, immunofluorescence, and immunoprecipitation, but also demonstrate neutralizing activity against SARS-CoV-2 infection to VeroE6/TMPRSS2 cells. Due to their mouse origin, our monoclonal antibodies are compatible with the experimental immunoassay setups commonly used in basic molecular biology research laboratories, providing a useful tool for future research. Furthermore, in the hope of applying the antibodies of clinical setting, we determined the variable regions of the antibodies and used them to produce recombinant human/mouse chimeric antibodies.


Subject(s)
Antibodies, Monoclonal/biosynthesis , Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , COVID-19/prevention & control , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/isolation & purification , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/isolation & purification , Antibodies, Viral/chemistry , Antibodies, Viral/isolation & purification , Binding Sites , COVID-19/immunology , COVID-19/virology , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Mice , Neutralization Tests , Protein Binding , Protein Interaction Domains and Motifs , Protein Subunits/administration & dosage , Protein Subunits/genetics , Protein Subunits/immunology , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/administration & dosage , Spike Glycoprotein, Coronavirus/immunology , Vaccination
6.
EBioMedicine ; 55: 102743, 2020 May.
Article in English | MEDLINE | ID: covidwho-27911

ABSTRACT

BACKGROUND: Coronaviruses pose a serious threat to global health as evidenced by Severe Acute Respiratory Syndrome (SARS), Middle East Respiratory Syndrome (MERS), and COVID-19. SARS Coronavirus (SARS-CoV), MERS Coronavirus (MERS-CoV), and the novel coronavirus, previously dubbed 2019-nCoV, and now officially named SARS-CoV-2, are the causative agents of the SARS, MERS, and COVID-19 disease outbreaks, respectively. Safe vaccines that rapidly induce potent and long-lasting virus-specific immune responses against these infectious agents are urgently needed. The coronavirus spike (S) protein, a characteristic structural component of the viral envelope, is considered a key target for vaccines for the prevention of coronavirus infection. METHODS: We first generated codon optimized MERS-S1 subunit vaccines fused with a foldon trimerization domain to mimic the native viral structure. In variant constructs, we engineered immune stimulants (RS09 or flagellin, as TLR4 or TLR5 agonists, respectively) into this trimeric design. We comprehensively tested the pre-clinical immunogenicity of MERS-CoV vaccines in mice when delivered subcutaneously by traditional needle injection, or intracutaneously by dissolving microneedle arrays (MNAs) by evaluating virus specific IgG antibodies in the serum of vaccinated mice by ELISA and using virus neutralization assays. Driven by the urgent need for COVID-19 vaccines, we utilized this strategy to rapidly develop MNA SARS-CoV-2 subunit vaccines and tested their pre-clinical immunogenicity in vivo by exploiting our substantial experience with MNA MERS-CoV vaccines. FINDINGS: Here we describe the development of MNA delivered MERS-CoV vaccines and their pre-clinical immunogenicity. Specifically, MNA delivered MERS-S1 subunit vaccines elicited strong and long-lasting antigen-specific antibody responses. Building on our ongoing efforts to develop MERS-CoV vaccines, promising immunogenicity of MNA-delivered MERS-CoV vaccines, and our experience with MNA fabrication and delivery, including clinical trials, we rapidly designed and produced clinically-translatable MNA SARS-CoV-2 subunit vaccines within 4 weeks of the identification of the SARS-CoV-2 S1 sequence. Most importantly, these MNA delivered SARS-CoV-2 S1 subunit vaccines elicited potent antigen-specific antibody responses that were evident beginning 2 weeks after immunization. INTERPRETATION: MNA delivery of coronaviruses-S1 subunit vaccines is a promising immunization strategy against coronavirus infection. Progressive scientific and technological efforts enable quicker responses to emerging pandemics. Our ongoing efforts to develop MNA-MERS-S1 subunit vaccines enabled us to rapidly design and produce MNA SARS-CoV-2 subunit vaccines capable of inducing potent virus-specific antibody responses. Collectively, our results support the clinical development of MNA delivered recombinant protein subunit vaccines against SARS, MERS, COVID-19, and other emerging infectious diseases.


Subject(s)
Betacoronavirus/immunology , Middle East Respiratory Syndrome Coronavirus/immunology , Spike Glycoprotein, Coronavirus/immunology , Viral Vaccines/administration & dosage , Adjuvants, Immunologic/administration & dosage , Animals , Antibodies, Viral/biosynthesis , Antibodies, Viral/blood , COVID-19 Vaccines , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Female , Immunization, Secondary , Immunoglobulin G/biosynthesis , Immunoglobulin G/blood , Injections, Subcutaneous , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/immunology , SARS-CoV-2 , Specific Pathogen-Free Organisms , Time Factors , Vaccines, Subunit/administration & dosage , Viral Vaccines/immunology
SELECTION OF CITATIONS
SEARCH DETAIL